MCTensor: A High-Precision Deep Learning Library with Multi-Component Floating-Point Tao Yu^{*}, Wentao Guo^{*}, Jianan Canal Li^{*}, Tiancheng Yuan^{*}, Christopher De Sa *Equal Contribution, Cornell University

High Precision Computations

Applications: dynamic systems (Taylor methods), computational geometry (delaunay triangulation), hyperbolic deep learning ...

- **understand multiple-digit:** a sequence of digits with a single exponent (e.g., Julia BigFloat), represents compactly a much larger range of numbers
- □ multiple-component (MCF) [1]: an unevaluated sum of multiple ordinary floating-point numbers (e.g., float16), faster, uses existing floating-point accelerators

Multi-Component Tensor

Expansion: an unevaluated sum of floats (e.g. FloatTensor) $x = (x_0, x_1, \cdots, x_{nc-1}) = x_0 + x_1 + \ldots + x_{nc-1}$

D MCTensor Gradient

D MCTensor Object

 $x\{fc, tensor, nc\}$

Computing with MCTensor

Operations	MCTensor with PyTorch Tensor	MCTensor with MCTensor	
Add	Grow-ExpN	Add-MCN	
Multiply	ScalingN	Mult-MCN	
Divide	DivN	Div-MCN	

Algorithm 1 Grow-ExpN

Input: *nc*-MCTensor *x*, PyTorch Tensor *v* initialize $Q \leftarrow v$ for i = 1 to nc do $k \leftarrow nc + 1 - i$ $(Q, h_k) \leftarrow \mathbf{Two-Sum}(x_{k-1}, Q)$ end for $h \leftarrow (Q, h_1, \cdots, h_{nc})$ **Return:** Simple-Renorm(*h*, *nc*)

- **Two-Sum**(Tensor1, Tensor2) \rightarrow (result, error);
- **Simple-Renorm(**h, nc) \rightarrow moves zeros backward and outputs a MCTensor with *nc* component

 $rac{\partial f}{\partial x} = rac{\partial f}{\partial (x_0 + x_1 + \cdots + x_{nc-1})} = rac{\partial f}{\partial x_i}$

Julia BigFloat (*precision* = 3000)

Matrix level operations are implemented in a parallel manner using defined basic operations, e.g., Dot-MCN (torch.dot), MV-MCN(torch.mv), MM-MCN(torch.mm),

Matmul-MCN(torch.matmul) ...

Learning with MCTensor

MCTensor supports learning behaviors in the same way as PyTorch does with same interfaces:

MCModule	MCLinear	MCEmbedding	MCSequentia
MCActivation	MC-ReLU	MC-Softmax	MC-GELU
MCOptim	MCAdam	MCSGD	••••

MCTensor can be used in the same way as PyTorch Tensor with a few lines of replacement!

```
class MCLinear(MCModule):
def __init__(self, in_features, out_features, nc, bias=True):
    super(MCLinear, self).__init__()
    self.in_features = in_features
    self.out_features = out_features
    self.nc = nc
   self.weight = MCTensor(out_features, in_features, nc=nc, requires_grad=True)
    if bias:
        self.bias = MCTensor(out_features, nc=nc, requires_grad=True)
     else:
        self.bias = None
def forward(self, input):
   return F.linear(input, self.weight, self.bias)
```

MCModel Definition Block (MCLinear as an example)

Experiments and Results

We demonstrate the increased precision of MCTensor under the same data type by carrying out experiments in two settings:

A1. high precision learning with low precision numbers, using Logistic Regression model on Breast Cancer Dataset (2 classes, 569 samples, 30 features)

With *nc* equals to 2, MCTensor-based model reaches a **TTT1** much lower training loss in Logistic Regression compared to PyTorch HalfTensors

Logistic Regression on Breast Cancer Dataset

Experiments and Results

A2. high precision learning with low precision numbers, using MCTensor-MLP models, compared with MLP with PyTorch HalfTensors and FloatTensor

Dataset:

– Breast Cancer Dataset

	Model
-	MLP Float16
	MLP Float52 MLP Float64
	MC-MLP (nc=1)
	MC-MLP (nc=2

B. high precision hyperbolic embedding reconstruction task

□ Following [2], we use Poincaré upper-halfspace (Halfspace) model to embed the transitive closure for reconstruction on the WordNet Mammals dataset with 1181 nodes and 6541 edges.

Contrastiv

where the

References: [1] Priest, D. M. Algorithms for arbitrary precision floating point arithmetic. University of California, Berkeley, 1991 [2] Yu, Tao, and Christopher M. De Sa. Representing Hyperbolic Space Accurately using Multi-Component Floats. NeurIPS, 2021

Cornell Bowers CIS College of Computing and Information Science

– Reduced MNIST (10 classes, 1000 samples/class)

Test accuracy of MLPs on Reduced MNIST

ve learning approach v	with loss $\mathcal{L}(\Theta) = \sum_{i}$	$(\mathbf{x},\mathbf{y}) \in D \log rac{e^{-d_u(\mathbf{x},\mathbf{y})}}{\sum_{\mathbf{y}' \in \mathcal{N}(\mathbf{x})} e^{-d_u(\mathbf{x},\mathbf{y}')}}$				
hyperbolic distance function is $d_u(\mathbf{x}, \mathbf{y}) = \operatorname{arcosh}\left(1 + \frac{ \mathbf{x}-\mathbf{y} ^2}{2x_n y_n}\right)$ Performance of Hyperbolic Models						
	MAP (mean \pm sd)	MR (mean \pm sd)				
ace (f32) ace (f64)	$\begin{array}{c} 91.91\% \pm 0.64\% \\ 92.79\% \pm 0.41\% \end{array}$	$1.399 \pm 0.04 \\ 1.340 \pm 0.07$				
alfspace (f64 nc=1) alfspace (f64 nc=2) alfspace (f64 nc=3)	$93.02\% \pm 0.40\%$ $92.77\% \pm 0.28\%$ $93.31\% \pm 0.75\%$	1.296 ± 0.02 1.304 ± 0.02 1.282 ± 0.03				